Fórmulas Funções Trigonométricas 

/ Fórmulas / Matemática /

Funções Trigonométricas



1. Comprimento da circunferência

$C$ : comprimento
$r$ : raio



$C = 2 . \pi . r$
2. Arco e ângulo

$l$ : arco
$r$ : raio
$\alpha$ : ângulo




$\alpha = \dfrac{\mathbb{l}}{r}$



$\mathbb{l}=r \quad \Rightarrow \quad \alpha = 1$ radiano
3. Conversão de graus para radiano

$\dfrac{x}{180}=\dfrac{y}{\pi}$
$x$ : graus
$y$ : radianos
4. Relações métricas no triângulo retângulo

$b^{2}=a.m $

$c^{2}=a.n $

$h^{2}=m.n $

$b.c=a.h $

$a^{2}=b^{2}+c^{2} $

$b^{2}=m^{2}+h^{2} $

$c^{2}=n^{2}+h^{2}$
5. Relações trigonométricas no triângulo retângulo

$sen(\alpha) =\frac{cateto \ oposto}{hipotenusa}=\frac{b}{a}$


$sen(\beta) =\frac{cateto \ oposto}{hipotenusa}=\frac{c}{a}$


$cos(\alpha) =\frac{cateto \ adjacente}{hipotenusa}=\frac{c}{a}$


$cos(\beta) =\frac{cateto \ adjacente}{hipotenusa}=\frac{b}{a}$


$tg(\alpha) =\frac{cateto \ oposto}{cateto \ adjacente}=\frac{b}{c}$


$tg(\beta) =\frac{cateto \ oposto}{cateto \ adjacente}=\frac{c}{b}$


$cotg(\alpha) =\frac{1}{tg(\alpha)}=\frac{c}{b}$


$cotg(\beta) =\frac{1}{tg(\beta)}=\frac{b}{c}$


$sec(\alpha) =\frac{1}{cos(\alpha)}=\frac{a}{c}$


$sec(\beta) =\frac{1}{cos(\beta)}=\frac{a}{b}$


$cossec(\alpha) =\frac{1}{sen(\alpha)}=\frac{a}{b}$


$cossec(\beta) =\frac{1}{sen(\beta)}=\frac{a}{c}$
6. Gráfico geral das funções trigonométricas circulares

$\overline{OL}$ : seno $\alpha$
$\overline{OP}$ : cosseno $\alpha$
$\overline{AT}$ : tangente $\alpha$
$\overline{BS}$ : cotangente $\alpha$
$\overline{OK}$ : secante $\alpha$
$\overline{OJ}$ : cossecante $\alpha$
7. Função seno

$f(x)=sen(x)$

$Dom(f)=\mathbb{R}$

$Im(f)=[-1,1]$
8. Função cosseno

$f(x)=cos(x)$

$Dom(f)=\mathbb{R}$

$Im(f)=[-1,1]$
9. Função tangente

$f(x)=tg(x)$

$Dom(f)=\mathbb{R} - \left\{ \frac{\pi}{2}+k.\pi, \ k \in \mathbb{Z} \right\}$

$Im(f)=\mathbb{R}$
10. Função cotangente

$f(x)=cotg(x)$

$Dom(f)=\mathbb{R} - \left\{ k.\pi, \ k \in \mathbb{Z} \right\}$

$Im(f)=\mathbb{R}$
11. Função secante

$f(x)=sec(x)$

$Dom(f)=\mathbb{R} - \left\{ \frac{\pi}{2} + k.\pi, \ k \in \mathbb{Z} \right\}$

$Im(f)=\mathbb{R} - (-1, 1)$
12. Função cossecante

$f(x)=cossec(x)$

$Dom(f)=\mathbb{R} - \left\{ k.\pi, \ k \in \mathbb{Z} \right\}$

$Im(f)=\mathbb{R} - (-1, 1)$
13. Alguns valores particulares das funções trigonométricas

Ângulos Funções trigonométricas
Graus Radianos Sen Cos Tg Cotg Sec Cossec
$0^{\circ}$ $0$ $0$ $1$ $0$ $\not\exists$ $1$ $\not\exists$
$30^{\circ}$ $\frac{\pi}{6}$ $\frac{1}{2}$ $\frac{\sqrt[]{3}}{2}$ $\frac{\sqrt[]{3}}{3}$ $\sqrt[]{3}$ $\frac{2 \sqrt[]{3}}{3}$ $2$
$45^{\circ}$ $\frac{\pi}{4}$ $\frac{\sqrt[]{2}}{2}$ $\frac{\sqrt[]{2}}{2}$ $1$ $1$ $\sqrt[]{2}$ $\sqrt[]{2}$
$60^{\circ}$ $\frac{\pi}{3}$ $\frac{\sqrt[]{3}}{2}$ $\frac{1}{2}$ $\sqrt[]{3}$ $\frac{\sqrt[]{3}}{3}$ $2$ $\frac{2 \sqrt[]{3}}{3}$
$90^{\circ}$ $\frac{\pi}{2}$ $1$ $0$ $\not\exists$ $0$ $\not\exists$ $1$
$120^{\circ}$ $\frac{2 \pi}{3}$ $\frac{\sqrt[]{3}}{2}$ $- \frac{1}{2}$ $- \sqrt[]{3}$ $- \frac{\sqrt[]{3}}{3}$ $-2$ $\frac{2 \sqrt[]{3}}{3}$
$135^{\circ}$ $\frac{3 \pi}{4}$ $\frac{\sqrt[]{2}}{2}$ $- \frac{\sqrt[]{2}}{2}$ $-1$ $-1$ $- \sqrt[]{2}$ $\sqrt[]{2}$
$150^{\circ}$ $\frac{5 \pi}{6}$ $\frac{1}{2}$ $- \frac{\sqrt[]{3}}{2}$ $- \frac{\sqrt[]{3}}{3}$ $- \sqrt[]{3}$ $- \frac{2 \sqrt[]{3}}{3}$ $2$
$180^{\circ}$ $\pi$ $0$ $-1$ $0$ $\not\exists$ $-1$ $\not\exists$
$210^{\circ}$ $\frac{7 \pi}{6}$ $- \frac{1}{2}$ $- \frac{\sqrt[]{3}}{2}$ $\frac{\sqrt[]{3}}{3}$ $\sqrt[]{3}$ $- \frac{2 \sqrt[]{3}}{3}$ $- 2$
$225^{\circ}$ $\frac{5 \pi}{4}$ $- \frac{\sqrt[]{2}}{2}$ $- \frac{\sqrt[]{2}}{2}$ $1$ $1$ $- \sqrt[]{2}$ $- \sqrt[]{2}$
$240^{\circ}$ $\frac{4 \pi}{3}$ $- \frac{\sqrt[]{3}}{2}$ $- \frac{1}{2}$ $\sqrt[]{3}$ $\frac{\sqrt[]{3}}{3}$ $- 2$ $- \frac{2 \sqrt[]{3}}{3}$
$270^{\circ}$ $\frac{3 \pi}{2}$ $-1$ $0$ $\not\exists$ $0$ $\not\exists$ $-1$
$300^{\circ}$ $\frac{5 \pi}{3}$ $- \frac{\sqrt[]{3}}{2}$ $\frac{1}{2}$ $- \sqrt[]{3}$ $- \frac{\sqrt[]{3}}{3}$ $2$ $- \frac{2 \sqrt[]{3}}{3}$
$315^{\circ}$ $\frac{7 \pi}{4}$ $- \frac{\sqrt[]{2}}{2}$ $\frac{\sqrt[]{2}}{2}$ $-1$ $-1$ $\sqrt[]{2}$ $- \sqrt[]{2}$
$330^{\circ}$ $\frac{11 \pi}{6}$ $- \frac{1}{2}$ $\frac{\sqrt[]{3}}{2}$ $- \frac{\sqrt[]{3}}{3}$ $- \sqrt[]{3}$ $\frac{2 \sqrt[]{3}}{3}$ $-2$
$360^{\circ}$ $2 \pi$ $0$ $1$ $0$ $\not\exists$ $1$ $\not\exists$




desenvolvido por


Copyright © 2023 Central Exatas
Todos os direitos reservados.